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Performance Assessment of Wind Turbines:
Data-Derived Quantitative Metrics

Yusen He and Andrew Kusiak , Member, IEEE

Abstract—Deteriorating performance of wind turbines results
in power loses. A two-phase approach for performance evaluation
of wind turbines is presented at past and future time intervals.
Historical wind turbine data is utilized to determine the past
performance, while performance at future time horizons calls
for power prediction. In phase I of the proposed approach, wind
power is predicted by an ensemble of extreme learning machines
using parameters such as wind speed, air temperature, and the
rotor speed. In phase II, the predicted power is used to construct
Copula models. It has been demonstrated that the parameters
of the Copula models serve as usable metrics for expressing
performance of wind turbines. The Frank Copula model performs
best among the five parametric models tested.

Index Terms—Extreme learning machine, linear ensemble, per-
formance metrics, parametric Copula models, tail dependence
analysis, wind turbine performance evaluation.

I. INTRODUCTION

THE operations and maintenance (O&M) activities of wind
turbines impact profitability of wind power generation [1]–

[8]. The O&M cost is closely correlated to the performance of
wind turbines. Deteriorating performance of a wind turbine may
be caused by the failing components of the power train, con-
verter, or the yaw mechanism [9]. Failure of these components
and assemblies impacts the turbine maintenance cost [10], [11].
Factors such as variations of the wind speed and air density may
also impair performance of a wind turbine.

Performance of any system is usually expressed by a ratio
of the system output and the input which tends to be linear.
Assessing performance of a wind turbine is difficult due to
inherent nonlinearity between the input (wind speed) and the
output (power generated). It is further complicated by the distri-
bution of faults across the working envelope. There is no usable
metric for measuring performance of wind turbines. The liter-
ature on performance evaluation of wind turbines has focused
on physics-based and data-driven modeling. The physics-based
approaches encompass parametric and nonparametric reliability
models [12], [13]. Fatigue analysis applied to estimation of the
lifetime of turbine components has been studied in [14]. Most
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physics-based models are fault specific and involve probability
distributions of faults. The fatigue analysis methods and reli-
ability models are useful in analyzing and predicting faults of
specific components. However, wind turbines are complex as-
semblies and their performance is impacted by different factors.
The latter limits the use of physics-based approaches. The data-
driven approaches have been used to model different phenom-
ena in wind turbines, including visualizing performance of wind
turbines [15]. Prediction of wind power is key to anticipating
changes in performance of wind turbines. Time-series models,
such as autoregressive moving average (ARMA) and gener-
alized autoregressive conditional heteroskedasticity (GARCH)
have been applied for prediction of wind power output in [16],
[17]. Serial correlation and seasonality characteristics of wind
speed and wind power can be detected by these models. The
time-series models are usually less accurate than the machine
learning models. Neural network (NN) and fuzzy logic models
were developed for predictive modeling of wind power [18],
[19]. The extreme learning machine (ELM) approach was ap-
plied to predict wind power in [20], [21]. In comparison to the
traditional algorithms such as support vector machines (SVMs)
and neural networks (NNs), the ELM algorithm appears to work
faster and it provides more accurate predictions. Some studies
have focused on evaluating turbine performance with statisti-
cal approaches. Gill and Stephen [22] applied empirical Copula
models for early recognition and anticipation of degradation
of blades, yaw mechanism, and the pitch system. Based on
their research, Wang and Infield [23] applied a mixed Gaussian
parametric Copula model for performance evaluation of wind
turbines.

In this research, ELM-Copula modeling is applied to express
performance of wind turbines. A linear ensemble of ELMs based
on LASSO (least absolute shrinkage and selection operator)
regularization [24] predicts wind power. Traditional machine
learning models such as NN, SVM, and ELM are suitable for
short-horizon predictions, however, they provide less accurate
results for longer prediction horizons. With the LASSO regu-
larization [25], the proposed ensemble approach provides more
accurate results than any independent ELM. To quantify turbine
performance, tail dependency and concordance measurement
metrics are applied in this paper. For tail dependency analy-
sis, parametric Copula models are used to test the measured
wind speed and predicted wind power. The maximum likeli-
hood estimation is used for the parameters of the Copula mod-
els. Two concordance measurement metrics, Kendall’s tau and
Spearman’s rho, are computed using the estimated parameters
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Fig. 1. The data-driven modeling framework.

to evaluate turbine performance. The benefits of the proposed
approach, including the tau and rho metrics, are demonstrated
with computational experiments.

II. DATA-DRIVEN METHODOLOGY

The power generated by a turbine is impacted by the vari-
able wind conditions, air density, and component malfunctions
[9]. For example, gearbox faults and pitch misalignment lead
to power losses visible in a power curve. The decreased per-
formance of a wind turbine is indicated by points outside the
contour of the power curve. A well-performing wind turbine
has fewer points scattered outside of the dominant power curve
contour. Visual analysis of power curves based on historical data
is inaccurate, and impossible at future time horizons.

In this paper, a methodology utilizing extreme learning ma-
chine (ELM) and Copula models is proposed to analyze tail de-
pendence and concordance between the measured wind speed
and the predicted wind power. The dataset used in the study
has been collected from an operating wind farm in the period
January 2013 to December 2015. The data collected feeds the
modeling framework presented in Fig. 1. The daily average wind
data from 2013 and 2014 is utilized for training and the data of
2015 is utilized for model validation.

The SCADA data is preprocessed with imputation of miss-
ing values and removal of redundancies. In phase I of the
methodology in Fig. 1, parameters are selected by the Relief-F
algorithm [26], [27]. The wind speed is used to predict the wind
power by the MLE-ELM approach. In phase II, the marginalized
distributions of the measured wind speed and predicted wind
power are constructed. Five parametric Copula models are fit-
ted and parameters of each model are derived by the maximum

likelihood estimation (MLE). The performance of parametric
Copula models is evaluated with the Akaike information crite-
rion (AIC) and the Bayesian information criterion (BIC). Copula
models with the smallest values of AIC and BIC perform best.

A. Extreme Learning Machine

Traditional machine learning algorithms such as naı̈ve Bayes
and zero R can be not accurate. Support vector machines (SVMs)
are more promising in classification on high-dimensional data
[28]. However, the performance of SVM in regression depends
on the kernel functions selected. A multiple linear perceptron
(MLP) algorithm usually performs well, however, overfitting
and expensive training are commonly reported. Extreme learn-
ing machine (ELM) overcomes these drawbacks and it has
proven to offer good prediction accuracy across many appli-
cations [29]–[31].

The basic ELM algorithm consists of three layers: input layer,
hidden layer, and output layer. Given the training set (xi, ti), the
hidden node output function G(a,b,x), and the number of hidden
nodes L, the learning model is expressed in (1)-(2).

fL (xj ) = oj ,∀j (1)

L∑

i=1

βiG(ai, bi , xj ) = tj , j = 1, 2, . . . , N (2)

where: xj represents the input parameters; oj represents the
predicted output values; fL () is the non-linear function repre-
senting the ELM algorithm; ai is the weight vector connecting
the ith hidden node and the input nodes; bi is the threshold of
the ith hidden node; βi is the weight vector connecting the ith
hidden node and the output nodes; and tj is the actual output
value. To evaluate the performance of ELM, the two following
metrics are used: the RMSE (root mean square error (3)) and
the MAPE (mean absolute percentage error) (4)).

The extreme learning machine (ELM) is stated next [32]:

Step 1: Hidden node parameters ai and bi are randomly
assigned.

Step 2: The hidden layer output matrix H is computed from (5).
Step 3: The output weight β is computed as β = H+T , where

H+ is the Moore-Penrose generalized inverse of hidden layer
output matrix H.

RMSE =

√√√√ 1
N

N∑

j = 1

‖oj − tj‖2 (3)

MAPE =
1
N

n∑

i = 1

∣∣∣∣
oj − tj

tj

∣∣∣∣ (4)

H =

⎡

⎢⎢⎣

G(a1 , b1 , x1) · · · G(aL , bL , x1)
...

. . .
...

G(a1 , b1 , xN ) · · · G(aL , bL , xN )

⎤

⎥⎥⎦

N ×L

(5)
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B. A Linear Ensemble of Extreme Learning Machines (ELM)
Based on LASSO Regularization

The basic extreme learning algorithm randomly assigns hid-
den nodes and incrementally updates the output weights of the
hidden layer nodes. However, finding the optimal number of
hidden nodes minimizing the training error is a challenge. A
number of algorithms has been proposed to minimize the train-
ing error and offer satisfactory generalization capability. For
example, improved prediction accuracy has been reported with
the bidirectional extreme learning machine (B-ELM), online-
sequential extreme learning machine (OS-ELM), and multilayer
hierarchical extreme learning machine (H-ELM). In this paper,
a LASSO (least absolute shrinkage and selection operator) reg-
ularized linear ensemble of ELMs (MLE-ELM) is employed to
predict wind power.

Yu [33] proposed a double-regularized extreme learning ma-
chine (ELM) with LASSO regularization and Tikhonov regu-
larization. In this paper, the LASSO regularization is selected
as the ensemble method of ELMs. The LASSO regularization
is expressed in (6).

min
λ,ω

⎛

⎝
N∑

i = 1

(yi − xiω)2 + λ

P∑

j = 1

|ωj |
⎞

⎠ (6)

where: xi denotes the input parameter; yi represents the mea-
sured output value; ω is the regression weight; and λ is the
non-negative regularization parameter. The aim of LASSO reg-
ularization is to optimize the output by changing the output
weights of the multiple ELMs.

C. Copula-Based Joint Distribution Modeling

The most direct indication of underperformance of a wind
turbine is in the abnormal tail dependency and co-movement be-
tween the measured wind speed and the predicted wind power.
Co-movement is the correlated movement of wind speed and
wind power [38]. Tail dependence expresses the propensity of
the wind speed and wind power jointly moving up and down
[36]. To investigate the dependence and co-movement, para-
metric Copula models are constructed. The Copula model was
originally proposed by Sklar [34], [35] as an N-dimensional joint
distribution function expressed as a composition of N univariate
marginal distribution functions and a suitable Copula function.
To evaluate performance of a wind turbine, two marginal dis-
tributions of the measured wind speed and the predicted wind
power are established. The general Copula model is expressed
in (7).

F (x1(t), x2(t)) = C[Fx1 (x1(t)), Fx2 (x2(t))] (7)

where: x1 is the measured wind speed; and x2 represents the
predicted wind power; F (x1) and F (x2) are the marginal cu-
mulative density functions (CDFs) of the measured wind speed
and the predicted wind power; F (x1 , x2) is the two-dimensional
joint distribution; and C(u1 , u2) is the Copula function.

The Copula modeling of wind turbine performance offers
several advantages. First, the Copula approach captures the
marginal behavior of measured wind speed and predicted wind

TABLE I
SUMMARY OF COPULA MODELS

Copula Archimedean Extreme Value Lower Tail Upper Tail
Copula Copula Dependence Dependence

Gaussian No No No No
Student-t No No Yes Yes
Gumbel Yes Yes No Yes
Clayton Yes No Yes No
Frank Yes No No No

TABLE II
DATASET DESCRIPTION

Dataset Number of Records Time Period

Total set 157 825 1/1/2013-12/31/2015
Training set 105 121 1/1/2013-12/31/2014
Test set 52 704 1/1/2015-12/31/2015

power. The dependence structure between these two parameters
is established. The degree of dependence and the dependence
structure are expressed with a Copula function [36]. In addi-
tion, Copula models capture the tail dependence and measure
the co-movement.

D. Parametric Copula Models

Among several parametric Copula models, two Copula fam-
ilies, the Elliptical Copula and Archimedean Copula family are
frequently used. The Elliptical Copula family includes Gaussian
Copula and Student-t Copula. The Archimedean Copula family
includes Gumbel Copula, Clayton Copula, and Frank Copula.
As illustrated in Table I, among Archimedean Copulas, only the
Gumbel Copula model reflects the upper tail dependence with
high sensitivity. The Clayton Copula is suitable for modeling the
lower tail dependence. For Elliptical families, both Student-t
Copula and Gaussian Copula model are symmetric. Student-
t Copula models both lower tail and upper tail dependence.
The Frank Copula model evaluates concordance between two
highly associated variables with heavily-tailed distributions. The
Gaussian Copula does not model tail dependence.

The preliminary analysis of the measured wind speed and the
predicted wind power indicates that their marginal distribution is
right fat-tailed. Hence, the Archimedean Copula is selected for
modeling. The model performance is assessed with the Akaike
information criterion (AIC) and Bayesian information criterion
(BIC) presented in (8) and (9), respectively.

AIC = 2k − 2ln(L) (8)

BIC = − 2ln(L) + k ∗ ln(n) (9)

where: k denotes the number of estimated parameters; L denotes
the maximum value of the likelihood function; and n represents
the total number of samples used in the model development.

In this study, the Spearman’s rho (10) and Kendall’s tau
(11) concordance metrics are computed to detect co-movement
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TABLE III
PARAMETER SELECTION BY THE RELIEF-F ALGORITHM

k Wind Air Rotor Gear oil Ambient Working Hours Alarm Break Generator Status Set Alarm
speed temperature speed temperature temperature hours without grid frequency released cut-in code point frequency

10 0.049 0.017 0.015 0.005 0.003 0.000 0.000 0.001 0.001 0.001 0.001 0.005 0.005
15 0.056 0.023 0.013 0.005 0.002 0.000 0.000 0.001 0.002 0.001 0.001 0.004 0.006
20 0.060 0.026 0.012 0.005 0.001 0.002 0.003 0.000 0.004 0.001 0.000 0.003 0.007
25 0.064 0.028 0.011 0.006 0.000 0.001 0.001 0.001 0.003 0.001 0.001 0.002 0.009
30 0.067 0.031 0.009 0.005 0.000 0.000 0.000 0.001 0.002 0.001 0.001 0.002 0.010

anomalies.

τFrank = 1 +
4[D1(a) − 1]

a
(10)

ρFrank = 1 +
12[D2(α) − D1(α)]

α
(11)

where: Dm (x) is the first order of Debye function [37] defined
in (12).

Dm (x) =
m

xm

∫ x

0

tm

et − 1
dt (12)

III. CASE STUDY

In this section the proposed approach is illustrated with a case
study. The 10-min wind farm data collected from Jan 1st 2013
to Dec 31st 2014 was used to construct the ELM-Copula model
and assess turbine performance. One year data collected from
Jan 1st to Dec 31st in the year of 2015 was selected to validate
the constructed model.

The SCADA summarized in Table II has been partitioned into
1095 files based on the fixed time interval. Each file contains a
day of data.

A. Parameter Selection With the Relief-F Algorithm

The dataset used in this case study includes 26 parameters,
e.g., wind speed, rotor speed, temperature, averaged over 10 min
intervals.

To determine relevancy of each parameter, the relief-F
algorithm is applied. It is an instance-based unsupervised lean-
ing heuristic algorithm that identifies parameters that are rele-
vant to the target output [26]. It overcomes a deficiency of the
original relief algorithm of coping with the nearest neighbors
that are not well defined in the weighted feature space. By av-
eraging k nearest neighbors when computing sample margins,
significant performance improvement has been reported [27].

Table III demonstrates performance of the candidate param-
eters for different values of k. The average rotor speed, wind
speed, and wind temperature have high relevancy to the wind
power. Hence, three input parameters, the average rotor speed,
wind speed, and wind temperature are selected to predict wind
power.

TABLE IV
PERFORMANCE EVALUATION OF SEVEN MODELS

Algorithm SVM MLP ELM B-ELM H-ELM OS-ELM MLE-ELM

RMSE 0.488 0.441 0.447 0.452 0.722 0.532 0.436
MAPE (%) 6.315 4.574 4.262 4.365 9.637 8.773 4.155

RMSE is the root mean square error; MAPE is the mean average percentage error.

B. The LASSO Regularized Linear Ensemble of Extreme
Learning Machines

The historical wind data from the year 2013 and 2014 is uti-
lized to develop an extreme learning machine (ELM) model.
The daily average and daily standard deviation of the historical
wind power are computed. Performance of the extreme learn-
ing machine algorithm is compared with the support vector
machine (SVM), multi-layer perceptron (MLP), basic extreme
learning machine (ELM), bidirectional extreme learning ma-
chine (B-ELM), online sequential extreme learning machine
(OS-ELM), and least absolute shrinkage and selection opera-
tor (LASSO) regularized linear ensemble of extreme learning
machines (MLE-ELM) models.

Table IV illustrates prediction performance of the seven mod-
els expressed in two metrics, RMSE (4) and MAPE (5).

The MLE-ELM model produces the smallest RMSE and
MAPE values. The testing performance of the MLE-ELM pre-
dicting the wind power for the year of 2015 is illustrated in
Fig. 2.

C. Joint Distribution Analysis of Measured Wind Speed and
Predicted Wind Power

Performance of wind turbines is evaluated with Copula mod-
els of the measured wind speed and predicted wind power. There
are two major approaches to Copula modeling, parametric and
non-parametric. The non-parametric empirical Copula models
evaluate the average dependency and concordance based on the
empirical distribution with a smooth kernel. The parametric ap-
proach models the tail dependence and the co-movement from
data. The deteriorating performance may be reflected by anoma-
lies in the tail dependence and co-movement. Hence, the para-
metric Copula models are constructed for turbine performance
evaluation. Table V offers summary of four basic statistics of
the measured wind speed and the predicted power in three years.
Skewness is the third central moment of the mean and it mea-
sures the asymmetry. Kurtosis is the fourth central moment of
the mean and it measures the heavy tails.
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Fig. 2. Performance comparison of two models.

TABLE V
STATISTICS OF THE MEASURED WIND SPEED AND THE PREDICTED

WIND POWER

Year Parameter Mean SD Skewness Kurtosis

2013 Wind speed (m/s) 8.48 0.77 –0.8 –0.55
Wind power (kW) 759.7 166.85 0.75 –0.66

2014 Wind speed (m/s) 8.58 1.09 0.17 –0.82
Wind power (kW) 764.76 215.18 0.32 –1.07

2015 Wind speed (m/s) 8.42 0.86 –0.7 –0.99
Wind power (kW) 741.12 176.82 0.73 –1.11

In 2015, the average measured wind speed was 8.42 m/s and
its predicted mean wind power was 741.12 kW. The negative
value of skewness in 2015 of average measured wind speed in-
dicates a low probability of wind speed exceeding the average
measured wind speed. The positive skewness value of the pre-
dicted wind power in 2015 points to a higher chance of wind
power exceeding the predicted mean wind power. A satisfactory
performance in 2015 can be expressed by the skewness of both
average measured wind speed and predicted mean wind power.
In 2014 the average measured wind speed was 8.58 m/s and the
predicted mean wind power was 764.76 kW. The positive values
of the skewness of the measured wind speed in 2014 suggests a
high probability of higher wind speed. However, the skewness

of the predicted wind power is 2014 is low. In 2013, the skew-
ness values of both measured wind speed and predicted wind
power are almost identical to the ones in 2015. Nevertheless,
the kurtosis of the predicted wind power in 2013 is the highest
in the three years which indicates more frequent occurrence of
extreme power changes. Hence, the two basic statistics indicate
improving turbine performance in 2015.

Table VI presents the normality test results. The normality
tests are conducted based on 10 min data from January 2013 to
December 2015. The Anderson-Darling (A-D) test, Jarque-Bera
(J-B) test, and Lilliefors (LF) test have been applied to test the
normality of the measured wind speed and predicted wind power
over the three years. The A-D test stat denotes the A statistics
of the normality test. The J-B test stat is the χ2 statistic of the
normality test. The LF test stat is the Kolmogorov–Smirnov
Goodness-of-Fit test statistic of the normality test. Since all
p-values are lower than 0.05, the normality of the marginal
distributions of the measured wind speed and the predicted wind
power is rejected. The computational results has validated the
wind energy experience.

D. Co-Movement Analysis With Parametric Copula Modeling

Table VII illustrates parameters of the Copula models of the
measured wind speed and the predicted wind power. Using the
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TABLE VI
NORMALITY TEST RESULTS

Dataset Parameter A-D Test J-B Test LF Test

Test Stat p-Value Test Stat p-Value Test Stat p-Value

2013 Wind speed (m/s) 281.754 0.0005 2918.4 0.0010 0.0564 0.0010
Wind power (kW) 840.619 0.0005 3112.6 0.0010 0.0881 0.0010

2014 Wind speed (m/s) 350.565 0.0005 2957.8 0.0010 0.0643 0.0010
Wind power (kW) 947.466 0.0005 3135.3 0.0010 0.0920 0.0010

2015 Wind speed (m/s) 361.668 0.0005 2958.7 0.0011 0.0684 0.0011
Wind power (kW) 954.164 0.0005 3216.1 0.0011 0.0982 0.0010

TABLE VII
PARAMETER ESTIMATION OF COPULA MODELS

Dataset 2013 2014 2015

Elliptical Family
Gaussian Copula
ρ 0.93 0.92 0.94
Loglikelihood –13 314.40 –13 508.00 –13 785.50
AIC –26 627.10 –27 015.50 –27 570.60
BIC –26 620.90 –27 016.40 –27 571.10
Student-t Copula
ρ 0.70 0.66 0.72
ν 4.89 4.72 3.86
-Loglikelihood –13 966.00 –11 671.20 –14 642.60
AIC –27 391.10 –23 341.00 –29 283.60
BIC –27 374.40 –23 324.50 –29 265.40
Archimedean Family
Clayton Copula
α 2.66 2.69 2.84
Loglikelihood –13 468.25 –12 450.85 –14 361.00
AIC –26 934.20 –24 899.60 –28 720.50
BIC –26 925.00 –24 890.00 –28 711.00
Gumbel Copula
δ 1.60 1.48 1.62
Loglikelihood –6650.40 –5020.10 –7066.10
AIC –13 299.00 –10 038.40 –14 131.00
BIC –13 291.20 –10 029.60 –14 123.50
Frank Copula
θ 5.61 5.44 5.90
Loglikelihood –18 181.00 –17 198.10 –19 076.50
AIC –36 360.20 –34 395.00 –38 150.00
BIC –36 351.40 –34 387.20 –38 142.20

two year SCADA data, Copula parameters of the Elliptical and
Archimedean Copula families are estimated by the maximum
likelihood estimation (MLE). The Akaike information criterion
(AIC) and the Bayesian information criterion (BIC) are com-
puted. The AIC and BIC are defined in Section II-D (see ex-
pressions (8)–(9)). The smaller values of AIC and BIC indicate
better performance of the parametric Copula model.

The small value (between 2 and 5) of the degree of free-
dom of the Student-t Copula models suggests a substantial co-
movement and tail dependence. The AIC values of Student-t
Copula models are smaller than those of the Gaussian Copula
models. This indicates a rejection of the symmetric no-tail de-
pendence structure implied by the Gaussian Copulas [36]. For
Archimedean Copula models, the estimated parameters of the
Clayton Copula and the Gumbel Copula suggest a statistically
significant level of upper tail dependence and lower tail depen-
dence. The computed values of the Clayton Copula parameter
are 2.66, 2.69, and 2.84 for 2013, 2014, and 2015 wind data,

Fig. 3. Contour plot and dependency structure of the fitted Frank Copula
model.

respectively. For the Gumbel Copula model, the upper tail de-
pendence values are 1.60, 1.48, and 1.62 for 2013, 2014, and
2015 wind data, respectively. These dynamic values indicate de-
teriorating performance of a wind turbine in 2014 expressed by
a significant decrease in the values of the upper tail dependence.

Performance of the parametric Copula models is summarized
in Table VII. All Copula parameters are estimated by the maxi-
mum likelihood estimator (MLE). The Akaike information cri-
teria (AIC) and Bayesian information criteria (BIC) values are
computed to assess performance of the Copula models. In com-
parison with the Elliptical Copula models which are symmetric,
the Archimedean Copula models performs better. The average
AIC and BIC values of the Archimedean Copulas are smaller
than those of the Elliptical. The Frank Copula model has pro-
duced the minimum values of AIC and BIC and hence it is
selected to measure the co-movement. The joint distribution of
the measured wind speed and the predicted wind power fitted
by the Frank Copula model is shown in Fig. 3.

The Spearman’s rho and Kendall’s tau are concordance mea-
surement metrics of parametric Copula models. The positive tau
and rho values indicate the measured wind speed and the pre-
dicted wind power co-move in the same direction. The Kendall’s
tau metric indicates that the probability of concordance is sig-
nificantly higher than the probability of discordance between
the measured wind speed and the predicted wind power. A pos-
itive value of Spearman’s rho indicates correlation between the
measured wind speed and the predicted wind power [36].

The computed and the predicted values of Kendall’s tau and
Spearman’s rho metrics are illustrated in Fig. 4 at a monthly
resolution. The training data is collected from January 2013
through December 2014 (2 year data). The prediction horizon
spans over January 2015 through December 2015. In the first
two years, the turbine performance is variable. In the summer
and fall seasons, the turbine is usually well-performing (high
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Fig. 4. Monthly tau and rho concordance measurement metrics.

Fig. 5. Monthly power curves for different performance levels.

Fig. 6. Relationship between tau, rho, and energy loss.

values of tau and rho). The lower values of tau and rho began
to emerge in winter and early spring which indicate degrading
turbine performance. In the 13th month, the predicted value of
tau and rho point to underperformance. The lower performance
in the winter of 2013, 2014, and 2015 indicates maintenance
shortcomings.

E. Model Validation With Wind Power Curves and
Energy Loss

To evaluate robustness of the data-driven approach, power
curves at monthly intervals have been established. Fig. 5 illus-
trates monthly power curves at different performance levels:
well performing, moderately performing, and underperforming.
According to Fig. 4, the best performance occurs in the summer
and fall seasons. In September 2015, the value of tau is 0.91 and
the rho value is 0.72, both above the average. The corresponding
power curve in Fig. 5(a) illustrates the well performing scenario
with all data points located around the power curve contour. For
the moderate performance scenario illustrated in Fig. 5(b), tau
is 0.8 while rho is 0.61. A larger number of points scattered
outside the power curve contour is indicative of low turbine per-
formance. The lowest performance occurred in the 13th month
(January 2014), with tau of 0.69 and rho of 0.48. This scenario
is illustrated in Fig. 5(c) where a large number of outliers is
observed.

To further validate the model, Pearson’s correlation coef-
ficient between the monthly energy loss and tau and rho in
years 2013, 2014, and 2015 has been computed. The cor-
relation coefficient for the data in Fig. 6 varies between
–0.88 and –0.89 which demonstrates negative linear correla-
tion between the energy loss tau and rho. For example, the
energy loss is 0 kWh, 3510.93 kWh, and 8009.02 kWh in
September 2015, January 2013, and January 2014, respectively.
The correlation analysis has confirmed that small values of tau
and rho indicate higher energy loss and thus point to lower
turbine performance.
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IV. CONCLUSION

In this paper, a data-driven approach for performance eval-
uation of wind turbines at the past and future time intervals
was developed. An ensemble of extreme learning machine was
applied to develop models to predict wind power needed for
turbine performance assessment at future time horizons. In-
dustrial data collected from of a wind farm was utilized to
train and validate the developed ensemble of extreme learning
machines.

The developed prediction models were integrated with the
parametric Copula models. The parameters of the Copula mod-
els provided metrics for performance assessment of wind tur-
bines. Among the five parametric Copula models studied,
the Frank Copula model performed best. The model perfor-
mance was measured with Kendall’s tau and Spearman’s rho
metrics.

Computational results reported in the paper have confirmed
validity of the tau and rho metrics in performance evaluation of
wind turbines. In the future research, other parametric Copula
models such as time-series Copulas (e.g., vine Copula [39]) and
multivariate Copulas (e.g., factor Copula [40]) will be studied
to explore different aspects of turbine performance. Multivari-
ate dependency and time varying parameterization will be con-
sidered to develop more accurate models. Collaborative model
development [41], [42] will be explored.
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